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1. PROJECT ACCOMPLISHMENTS 
 
In Year 2 of the project, we were able to complete the following tasks: 
 

• Developed an algorithm called FARM (Freshness Association Rule Mining) to estimate 
missing sensor data in sensor networks, taking the temporal dimension of sensor data into 
consideration. 

• Conducted an investigation of existing sensor data estimation techniques to compare with 
FARM and with another data estimation technique that we developed in Year 1, called 
WARM (Window Association Rule Mining).  

• Investigated data and applications used in the NASA/JPL Sensor Webs project. 
• Implemented FARM and existing sensor data estimation techniques and conducted 

experiments to compare FARM, WARM and those techniques using NASA/JPL Sensor 
Webs project’s data and traffic data in Austin, Texas. 

• Developed a data mining algorithm that deals with concept drifting when classifying data 
streams; implemented and compared it with the two existing data stream classification 
algorithms, VFDT and CVFDT. 

• Developed an algorithm and data structures to mine closed frequent itemsets for data 
streams. 

• Helped one Computer Science PhD student who is funded by this grant, Nan Jiang, 
complete her PhD Advisory Conference successfully. 

• Helped one Computer Science Master’s student who was not funded by this grant but 
contributed to the project by working on a Master’s thesis on a related research topic, 
Biao Liu, complete his Master’s thesis successfully. 

• Published one journal paper and two conference/workshop papers, submitted one 
conference paper for publication, and had one journal paper under preparation. 

 
In the following sections, we provide the details of the above tasks. 
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1.1. Developed an algorithm called FARM (Freshness Association Rule Mining) to estimate 
missing sensor data for a sensor network, taking the temporal dimension of sensor data 
into consideration 
 
Our previous work in Year 1 on data streams estimation resulted in an algorithm called WARM 
(Association Rule Mining).  WARM uses association rule mining concepts to estimate the 
missing sensor data readings in data streams. It identifies the sensors in the network that are 
related to the sensor with the missing data reading, and then uses the current readings of those 
related sensors to estimate the missing data reading of the missing sensor in the current round. 
WARM makes use of the sliding window concept, where only the last w rounds of data readings 
are stored. After receiving the first w rounds, every time a new round arrives, the oldest round 
data is discarded. In WARM, all the stored w rounds have the same importance in the estimation 
of the missing sensor data readings. In order to store the most recent data round and the 
relationships among sensors in the last w rounds, WARM uses three data structures – the Buffer, 
the Cube, and the Counter. To update the data structures, three algorithms were developed to 
estimate the missing sensor data reading – the checkBuffer, the update, and the estimateValue. 
 
However, WARM has a number of deficiencies.  First WARM has two relatively complicated 
data structures, the Cube and the Counter, that consume extra memory space and, at the same 
time, result in more time to estimate because of the need to update them after every new round of 
sensor data readings arrives. Second, it is possible in WARM to have more than one estimated 
value for one missing value where we end up choosing an estimated value randomly, which is 
not desirable. Third, freshness of data is not considered appropriately in WARM. By freshness of 
data, we mean that new data is more important than old data as in weather applications. In 
WARM, only the last w rounds in the sliding window are considered in estimation, but the effect 
of the sliding window size on estimation is not taken into account. In addition, all the rounds 
stored in the sliding window have the same importance; this means that if the sliding window 
size is big, the current round has the same estimation effect as the last round in the sliding 
window, which is not appropriate for many real-time applications such as climate applications. 
Fourth, WARM can only answer queries related to the data stored in the sliding window. Since 
we should scan the data in data streams only once, WARM stores only the last w rounds and 
disregards all other rounds. For that, there is no way to respond to user queries related to the past 
data.  

 
In Year 2, we developed a data estimation approach, called FARM (Freshness Association Rule 
Mining) that aims to eliminate WARM’s deficiencies.  Like WARM, FARM also uses 
association rule mining to identify the sensors that are related to the sensor with a missing value 
and uses the data readings of those sensors to estimate the missing value in the current round. 
FARM takes freshness of data into consideration, which is crucial in many real-time applications 
where recent data is more important than old data in the estimation of the missing value that 
occurs in the most recent round of data readings. To consider freshness of data, all rounds of data 
readings in FARM participate in the estimation process, where each round has a different level of 
contribution (called weight) to the estimation value. The weight of a round (x) is p times of the 
weight of the previous round (x-1), where p is a user-defined value greater than 1, called a 
damped factor.  This factor represents the importance of a round of data readings compared with 
the previous one in the estimation process. The order x reflects the recency of the data in that 
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round.  The more recent the data are, the higher weight they have, and subsequently, the more 
they will contribute to the calculation of the estimated values for the missing data.  In order to 
estimate, FARM determines the sensors that are related to the sensor with the missing value so 
that they can participate in the estimation of the missing sensor data reading. To store the most 
recent data round and the relationships between every pair of sensors, FARM uses the Buffer and 
the 2D Ragged Array of Objects. To estimate the missing data, FARM employs three algorithms 
– checkBuffer, update, and estimateValue – as in WARM but with appropriate modifications to 
reflect the changes in data mining and data structures.   

 
An added advantage of FARM is that by using the weights of the states of the diagonal entries in 
the two dimensional ragged array of objects, the Retrieve Data algorithm in FARM is able to 
retrieve the whole data again at any point in time, and thus, can respond to all user queries.  This 
eliminates the problem associated with data stream applications where no limited memory can 
hold the whole data streams because memory is limited and data streams arrive continuously.  
That problem exists in WARM:  there is no way to access the whole data again; i.e., WARM can 
not answer queries related to the data that is not stored in the window. 

 
 
1.2. Conducted an investigation of existing sensor data estimation techniques to compare 
with FARM and with another data estimation technique that we developed in Year 1, 
called WARM (Window Association Rule Mining)  
 
In Year 1, we identified a number of popular statistical methods for data estimation existing in 
the literature [Allison 2002; Dempster, 1977; Gelman, 1995; Iannacchione, 1982; McLachlan, 
1997; Rubin, 1987; Rubin, 1996; Shafer, 1995], such as Mean Substitution, Simple Linear 
Regression, Cold Deck Imputation, Hot Deck Imputation, and Expectation Maximization, 
Maximum Likelihood, and Multiple Imputations.   In Year 2, we investigated further into the 
following existing techniques that handle missing sensor/stream data. In the NASA/JPL Sensor 
Webs project [NASA, 2006], if one sensor fails, its neighboring sensors compensate for the last 
data by increasing their sampling rates. There are several disadvantages with this approach. First, 
there must be a tight collaboration among sensors for a sensor to know that its neighboring 
sensor has failed. This increases power consumption on every sensor even during its normal 
operation and, thus, is impractical for sensor networks where data missing/corruption is expected 
not to be a rare occurrence. Second, the approach does not address how sampling rates of 
neighboring sensors should be adjusted in order to guarantee a good quality of service in terms of 
data accuracy, query real-time constraints as well as sensors’ power consumption. And third, if 
several sensors that are next to each other, say S2, S3, and S4, fail at the same time, which is 
possible in some harsh environments like the Mars planet, adjusting the sampling rates of S1 and 
S5 would not compensate for the data lost caused by S3, assuming that S1 is next to S2 and S5 is 
next to S4. 
 
Some probabilistic models, such the BBQ system [Deshpande, 2005], are designed to predict 
missing values in data streams. The BBQ system is learned from a set of training data which 
consist of the readings of all monitored attributes of data streams over a period of time. During 
the training period, the system computes the initial correlations between the monitored attributes 
in order to build its basic model. After training, the system adjusts the initial correlations every 
time new values for the monitored attributes are observed. The BBQ system has two 
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disadvantages. First, it may take a lot of time to build the basic model during the training period 
if some missing values exist in the training data. Second, it cannot answer user queries before 
building the basic model; i.e., estimation of missing values cannot be performed before the basic 
model is constructed. 
 
SPIRIT [Papadimitriou, 2005] uses auto-regression as its basic forecasting model to estimate 
missing values in data streams. SPIRIT spots correlations on numerical streams and extracts the 
hidden variables that summarize the key trends in the entire stream collection. To estimate the 
missing values, SPIRIT applies auto-regression on the extracted hidden variables and uses the 
results to predict the values of the missing data. So, whenever there is a missing value in any 
round of data, SPIRIT uses the forecast based on the values in the previous round to estimate the 
missing values in the current round. One of the disadvantages with estimation using SPIRIT is 
related to the accuracy of estimation. It is true that SPIRIT estimates very fast and consumes just 
a little memory space, but its accuracy is not as good as other estimation techniques. 
 
TinyDB [Madden, 2005] is a query processing system for extracting information from a network 
of special type of sensors. Given a query specifying the user data interests, TinyDB collects that 
data from motes in the environment, filters it, aggregates it together, and routes it out to a PC. 
TinyDB does this via power-efficient in-network processing algorithms. TinyDB estimates the 
missing values by taking the average of all the values reported by the other sensors in the current 
round. This approach has many disadvantages: First, the accuracy of this approach is in doubt 
because only the readings of other sensors at the current round are used to estimate the missing 
sensor value; it may be that the missing sensor is not related at all to those other sensors. Second, 
this approach will have bad accuracy results especially if there is multiple sensors failure at the 
same time; and more specifically, if related sensors miss their value at the same time.   

    
 
1.3. Investigated data and applications used in the NASA/JPL Sensor Webs project 
 
Examining data and applications used by the NASA/JPL Sensor Webs project [NASA, 2006], 
we were able to identify a dataset that we can use to test our algorithms for sensor data 
applications in which data freshness is important.  The dataset consists of 13 sensors where all 
sensors also report their data readings to a single server every 5 minutes. The sensors are 
embedded in the Huntington Botanical Gardens in San Marino, California. The sensors report the 
air temperature of several places in the gardens for different time intervals. The actual sensors’ 
readings are used as an input data to our simulation. Using this dataset, we want to study the 
effect of freshness of data since this is a climate dataset and the importance of data recency is 
reflected here. For example, in this dataset, there is a great possibility that the air temperature 
reported by a certain sensor at 6:00 pm, for instance, is the same as the air temperature reported 
by the same sensor at 6:05 pm. 
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1.4. Implemented FARM and existing data estimation techniques and conducted 
experiments to compare FARM, WARM and those techniques using NASA/JPL Sensor 
Webs Project’s dataset and Austin’s Traffic Dataset 
 

We wrote Java programs to implement FARM and existing data estimation techniques.  We 
then conducted simulation experiments to compare the performances of FARM and WARM with 
SPIRIT, TinyDB, and four statistical estimation methods: (1) The Simple Linear Regression 
(SLR) approach: using estimated value based on the readings stored in the data model of this 
particular sensor and its next neighbor, (2) The Multiple Linear Regression (MLR) approach: 
using estimated value based on the readings stored in the data model of this particular sensor and 
its next 10 neighbors, (3) The Curve Regression (CE) approach: using estimated value based on 
the readings stored in the data model of this particular sensor and its next neighbor, and (4) The 
Average estimation approach: using the average of all the past readings for the sensor with the 
missing value in the current round as an estimate.  The performance metrics include estimation 
accuracy, estimation inability that represents the percentage of cases that cannot be estimated by 
the estimateValue algorithm alone, execution time, and storage space.   We used both the 
NASA/JPL Sensor Webs Project’s dataset as well as the traffic data collected by the Department 
of Transportation in Austin, Texas [Austin, 2005].  The results, as demonstrated through Tables 
1 – 6, can be summarized as follows.  For applications where recent data is more important than 
old data, FARM yields the best accuracy. For applications where old data is as important as 
recent data, WARM yields the best accuracy.  SLR has the best execution time and SPIRIT 
consumes the least storage space. The statistical approaches can estimate very fast and consume 
little memory space but they all fail to satisfy the accurate estimation property. Therefore, the 
statistical approaches do not fit most applications where accuracy cannot be sacrificed. SPIRIT 
also estimates very fast and consumes the least memory space, but it fails to satisfy the accurate 
estimation property for applications where freshness of data is considered.   Both FARM and 
WARM have feasible storage space and acceptable estimation speed for all applications. 
However, their accuracy differs according to the types of applications. For applications where 
recent data is more important than old data, FARM gives the overall best results.  For 
applications where old data is as important as recent data, WARM should be used. 

 
 

Table 1. Estimation Error for NASA data set 
 Estimation Error 

for NASA data 
How many % the 
best approach is 

better? 

FARM 0.00487 Best Approach 
WARM 0.00636 23.43% 
TinyDB 0.0085 42.71% 
SPIRIT 0.0116 58.02% 
Average 0.015 67.53% 

MLR  0.121 95.98% 
SLR 0.342 98.58% 
CE  0.346 98.59% 
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Table 2. Estimation Error for traffic data set 
 Estimation Error 

for traffic data 
How many % the 
best approach is 

better? 
WARM 0.090 Best Approach 
SPIRIT 0.0932 3.43% 
FARM 0.134 32.84% 
TinyDB 0.137 34.31% 
Average 0.1445 37.72% 

MLR  0.493 81.74% 
CE 2.253 96.01% 

SLR 2.286 96.06 
 

Table 3. Execution time for NASA data 
 Execution time for 

NASA data 
(seconds) 

How many % the 
best approach is 

better? 
SLR 0.044 Best Approach 
CE 0.049 10.2% 

MLR 0.059 25.42% 
SPIRIT 0.161 72.67% 
Average 0.200 78% 
TinyDB 0.210 79.04% 
FARM 0.261 83.14% 
WARM 0.301 85.38% 

 

Table 4. Execution time for traffic data  
 Execution time for 

traffic data 
(seconds) 

How many % the 
best approach is 

better? 
SLR 0.053 Best Approach 
CE 0.061 13.11% 

MLR 0.085 37.65% 
SPIRIT 0.270 80.37% 
TinyDB 0.309 82.85% 
Average 0.449 88.2% 
FARM 0.621 91.47% 
WARM 3.145 98.31% 

 

Table 5. Storage Space for NASA data 
 Storage Space for 

NASA data (KB) 
How many % the 
best approach is 

better? 
SPIRIT 0.1 Best Approach 

Average, TinyDB 0.15 33.33% 
SLR 1.32 92.42% 
CE 1.32 92.42% 

MLR 5.22 98.08% 
FARM 43.1 99.77% 
WARM 119.21 99.92% 
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Table 6. Storage Space for traffic data  
 Storage Space for 

traffic data (KB) 
How many % the 
best approach is 

better? 
SPIRIT 0.85 Best Approach 

Average, TinyDB 1.27 33.07% 
SLR 3.12 72.76% 
CE 3.12 72.76% 

MLR 5.47 84.47% 
FARM 911 99.91% 
WARM 5013 99.98% 

 
 
 

1.5. Developed a data mining algorithm that deals with concept drifting when classifying 
data streams; implemented and compared it with the two existing data stream classification 
algorithms, VFDT and CVFDT 
   
Many recent applications like sensor networks and network traffic monitoring system generate 
data streams that continuously arrive in high speed. The logic of data generation, or the concept 
that we try to learn from the data, might be constantly changing over time. This is known as 
concept drifting. Existing techniques for classifying data streams assume that either no concept 
drifting happens, or concept drifting frequently occurs, and thus, spend a large amount of system 
resources to monitor their target models for changes. However, both assumptions are not 
necessarily true in real-word applications. As a result, existing techniques either cannot handle 
concept drifting if it does occur, or waste tremendous precious system resources if concept 
remains stationary. Addressing this issue, in Year 2, we introduced a concept-drifting indicator 
and developed a new algorithm, called CSDI. Instead of monitoring the entire target model, 
which is expensive and impractical, we only monitor this indicator, and check the target model 
only when the indicator reveals concept drifting. Because tracking the concept-drifting indicator 
only needs a very small amount of system resources, our algorithm can remain efficient 
regardless of whether the concept is drifting or stationary.  

CSDI works as follows.  It first uses the existing algorithm, called VFDT[ ], to construct an 
initial decision tree, and then uses this initial decision tree to classify the succeeding chunk of 
sample records to obtain the normal concept-drifting indicator.  The concept-drifting indicator is 
the error rate that measures the accuracy of the constructed decision tree in classifying records, 
and the concept-drifting indicator that is obtained initially when no concept drifting has occurred 
is called the normal concept-drifting indicator or normal error rate.  Based on the obtained 
normal concept-drifting indicator and a user-defined indicator factor, CSDI then computes the 
concept-drifting threshold that is the upper bound of the normal concept-drifting indicator.  
Concept drifting is believed to have occurred if the concept-drifting indicator reaches the 
threshold. After initialization, CSDI starts to classify records by using the initial decision tree 
and to count the number of records that were classified incorrectly on each node. CSDI 
periodically (for each checking interval) checks the concept-drifting indicator to detect concept 
drifting. If concept drifting is detected, CSDI will start the searching process to locate all the 
invalid nodes under the new concept, and then update the tree.   
 
We conducted experiments comparing CSDI with two existing algorithms, VFDT [Domingos, 
2000] and CVFDT [Hulten, 2001], using both synthetic and real data.   We obtained the 
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following results.  If no concept drifting happens, VFDT is the best among the compared 
algorithms. But if there is concept drifting, the accuracy of VFDT decreases drastically and 
cannot be accepted. Although CVFDT can handle concept drifting, it uses too much system 
resource no matter whether or not there is concept drifting or how often concept drifting occurs. 
Our algorithm, CSDI, uses a little more system resource but achieves more accuracy and much 
more efficiency than CVFDT does. Therefore, CSDI can remain efficient and accurate regardless 
of whether there is concept drifting or not. Also CSDI can scale up very well when the number 
of attributes in data streams increases.  Figure 1 shows the performance comparison in terms of 
classification error rate when the number of times that concept drifting occurs is varied. 
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Figure 1: The effect of number of times concept drifting occurs on  

the classification error rate  
 

  

In Year 3, we plan to incorporate this algorithm into FARM to improve data estimation. 
 

1.6. Developed an algorithm and data structures to mine closed frequent itemsets for data 
streams 
 

Our data estimation techniques, both WARM and FARM, rely on the ability of our modified 
Apriori algorithm to discover association rules among sensors.   However, the modified 
algorithm is based on frequent itemsets, and thus consumes a lot of time and space.   To reduce 
those overheads, we use the concept of frequent closed itemsets instead.  Mining frequent closed 
itemsets provides complete and condensed information for non-redundant association rules 
generation. Extensive studies have been done on mining frequent closed itemsets, but they are 
mainly intended for traditional transaction databases, and thus do not take data stream 
characteristics into consideration. In Year 2, we developed a novel approach for mining closed 
frequent itemsets over data streams, called CFI-Stream. It computes and maintains closed 
itemsets online and incrementally, and can output the current closed frequent itemsets in real 
time based on users’ specified thresholds. When a transaction arrives or leaves the current data 
stream sliding window, the algorithm checks each itemset in the transaction on the fly and 
updates the associated closed itemsets’ supports. Current closed itemsets are maintained and 
updated in real time in a lexicographical ordered tree data structure, called DIU (Direct Update) 
tree.  Each node in the DIU tree represents a closed itemset. There are k levels in the DIU tree; 
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each level i stores the closed i-itemsets. The parameter k is the maximum length of the current 
closed itemsets. Each node in the DIU tree stores a closed itemset, its current support 
information, and the links to its immediate parent and children nodes. 
 
Different from previous closure checking techniques which require multiple scans over data [Pei, 
2000; Chang, 2003;  Xu, 2004; Lin, 2005], our method performs the closure checking on the fly 
with only one scan over data streams. It updates only the supports of the associated closed 
itemsets in the DIU tree online, which reduces the computation time and provides real time 
updated results. Our algorithm is an incremental algorithm where we check for closed itemsets 
and update their associated supports based on the previous mining results.  This is more efficient 
as compared with mining approaches that rescan and regenerate all closed itemsets when a new 
transaction arrives. 
  
Compared with other data stream mining techniques [Manku, 2002; Chi, 2004; Lin, 2005] etc., 
we only store the information of current closed itemsets in the DIU tree, which is a compact and 
complete representation of all itemsets and their support information. The current closed frequent 
itemsets can be output in real time based on users’ specified thresholds by browsing the DIU 
tree. Also, our algorithm handles the concept-drifting problem in data streams by storing all 
current closed itemsets in the DIU tree from which all itemsets and their support information can 
be incrementally updated.  

 
We compared our algorithm with Moment [Chi, 2004], which is the current state-of-the-art 
algorithm to mine closed itemsets in data streams. For the performance study, two synthetic 
datasets T10.I6.D100K and T5.I4.D100K-AB were used.  Experimental results show that our 
method can achieve better performance than Moment in terms of both time and space efficiency, 
especially when the minimum support is low and the datasets is dense.  Figure 2 illustrates the 
runtime performance comparison of the two algorithms for one of the datasets. 
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Figure 2. Runtime of CFI-Stream and Moment using the T10.I6.D100K data set 
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2. CHALLENGES 
 
The major challenge that we faced in Year 2 was how to obtain appropriate datasets for our 
performance studies.   We contacted the NASA/JPL research staff and carefully studied their 
Sensor Webs project in detail.  We finally were able to obtain an appropriate dataset that we 
could use.  But to evaluate the scalability of our algorithms, we would need larger datasets than 
the one we had.  In addition, we also would need to investigate queries on sensor data and 
implement those queries in our simulation models in order to study the effects of data estimation 
algorithms on response time of real-life queries. 
 
 
3. PLANS FOR NEXT YEAR 
 
In Year 3, we plan to work on the following tasks: 
 

• Revise FARM to include spatial data mining. 
• Work with NASA scientists to incorporate NASA data semantics into FARM. 
• Conduct a theoretical analysis of FARM. 
• Collect additional NASA data and queries aand conduct further performance evaluations. 
• Extend FARM to include distributed sensor networks and mobile sensor networks. 
• Conduct theoretical analysis and experiments comparing FARM with existing data 

estimation techniques for distributed sensor networks and mobile sensor networks using 
NASA data and synthetic data. 

• Incorporate classification, clustering, and frequent closed items association rule mining 
into FARM to improve data estimation. 

 
 
4. PUBLICATIONS AND PRESENTATIONS 
 

• NNaann  JJiiaanngg  aanndd  LLee  GGrruueennwwaalldd,,  ““RReesseeaarrcchh  IIssssuueess  iinn  AAssssoocciiaattiioonn  RRuullee  MMiinniinngg  ffoorr  DDaattaa  
SSttrreeaammss,,””  SSIIGGMMOODD  RREECCOORRDD,,  VVooll..  3355,,  NNoo..  11,,  MMaarrcchh  22000066.. 

••  BBiiaaoo  LLiiuu,,  ““Classify Data Streams using Concept-Drifting Detection Indicator,”  Master’s 
Thesis, School of Computer Science, University of Oklahoma, May 2006.  

••  NNaann  JJiiaanngg  aanndd  LLee  GGrruueennwwaalldd,,  ““CCFFII  ––  SSttrreeaamm::  MMiinniinngg  CClloosseedd  FFrreeqquueenntt  IItteemmsseettss  iinn  DDaattaa  
SSttrreeaammss,,””  aacccceepptteedd  ffoorr  ppuubblliiccaattiioonn  iinn  tthhee  pprroocceeeeddiinnggss  ooff  tthhee  AACCMM  IInntteerrnnaattiioonnaall  
CCoonnffeerreennccee  oonn  KKnnoowwlleeddggee  aanndd  DDaattaa  DDiissccoovveerryy  ((KKDDDD)),,  AAuugguusstt  22000066..  

••  NNaann  JJiiaanngg  aanndd  LLee  GGrruueennwwaalldd,,  ““AAnn  EEffffiicciieenntt  AAllggoorriitthhmm  ttoo  MMiinnee  OOnnlliinnee  DDaattaa  SSttrreeaammss,,””  
aacccceepptteedd  ffoorr  ppuubblliiccaattiioonn  iinn  tthhee  pprroocceeeeddiinnggss  ooff  tthhee  IInntteerrnnaattiioonnaall  WWoorrkksshhoopp  oonn  TTeemmppoorraall  
DDaattaa  MMiinniinngg,,  AAuugguusstt  22000066..  

• MMaazzeenn  AAbboouukkhhaammiiss  aanndd  LLee  GGrruueennwwaalldd,,  ““UUssiinngg  DDaattaa  MMiinniinngg  ttoo  EEssttiimmaattee  MMiissssiinngg  SSeennssoorr  
DDaattaa,,””  ssuubbmmiitttteedd  ttoo  IIEEEEEE  IInntteerrnnaattiioonnaall  CCoonnffeerreennccee  oonn  DDaattaa  EEnnggiinneeeerriinngg,,  JJuullyy  22000066 

• Biao Liu, Le Gruenwald,  Nan Jiang and MMaazzeenn  AAbboouukkhhaammiiss, “A Survey of Stream Data 
Mining Techniques”, under preparation, to be submitted to Data and Knowledge 
Engineering, 2006. 
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